INVITE NATURE INSIDE

CA300 CA500 CA800

February 2021

ComfortAir

A Decentralized ventilation with a capacity from 300 to $800m^3/h$, can be used in the following locations:

- Schools
- Offices
- Meeting rooms
- Canteens
- Institutions
- Module construction

OPERATING PRINCIPLE

ComfortAir is a decentralized ventilation system with built-in heat recovery for ventilation of comfort rooms in particular in indoor living spaces.

ComfortAir operates with an aluminium counter flow heat exchanger (5) to ensure maximum heat recovery. The unit utilizes warm indoor air to heat up inflowing fresh outdoor air. The counter flow heat exchanger's sole function is for heat retention.

Airflow:

The air supply ventilator (6) (Figure 2) creates inflow of fresh outdoor air through the filter (10), leading the inflow through the heat exchanger (5), and further through the air supply grate (4) and out into the room.

At the same time the air exhaust ventilator (7) creates outflow of indoor air leading it through the exhaust pipe (2) and further out to the open air outside.

The desired temperature of the air supply is regulated on the control panel. A sensor records the actual temperature of the flowing air supply. If the temperature is lower than the setpoint, the control system reduces the flow of the air supply warming it as it flows through the heat exchanger.

MAIN COMPONENTS

- 1. Supply air
- 2. Exhaust air
- 3. Exhaust air grate
- 4. Supply air grate
- 5. Counter flow heat exchanger
- 6. Supply air fan
- 7. Exhaust air fan
- 8. Bypass motor

- 9.Damper motor
- 10. Supply air filter
- 11. Control Board
- 12. Heater (option)
- 13. Circuit Breaker
- 14. Filter guard
- 15. Exhaust air filter
- 16. Condensation tray

TECHNICAL SPECIFICATIONS

Unit:		CA 300	CA 500	CA 800	Unit
Dimensions:	Length Depth Height	1250 803 350	1647 930 410	1921 1060 471	mm mm mm
Duct:		2 x 160	2 x 200	2 x 250	mm
Weight		50	75	119	Kg
Capacity:	Min Max Forced	50 300 420	80 500 715	100 800 1225	m³/h m³/h m³/h
Sound:	Min Max Forced	35	35	35	dB(A) dB(A) dB(A)
Filter:		ePM10/2,5	ePM10/2,5	ePM10/2,5	Filter class
Filter: Energy consumption:		ePM10/2,5	ePM10/2,5	ePM10/2,5	Filter class
Filter: Energy consumption:	Min	ePM10/2,5 10	ePM10/2,5 12	ePM10/2,5 20	Filter class Watts J/m³
Filter: Energy consumption:	Min Max	ePM10/2,5 10 45	ePM10/2,5 12 73	ePM10/2,5 20 125	Filter class Watts J/m ³ Watts J/m ³
Filter: Energy consumption:	Min Max Forced	ePM10/2,5 10 45 145	ePM10/2,5 12 73 155	ePM10/2,5 20 125 320	Filter class Watts J/m ³ Watts J/m ³ Watts J/m ³
Filter: Energy consumption: Output (motor):	Min Max Forced	ePM10/2,5 10 45 145 2x82	ePM10/2,5 12 73 155 2x80	ePM10/2,5 20 125 320 2x168	Filter class Watts J/m ³ Watts J/m ³ Watts J/m ³
Filter: Energy consumption: Output (motor): Power supply:	Min Max Forced	ePM10/2,5 10 45 145 2x82 1x230/50	ePM10/2,5 12 73 155 2x80 1x230/50	ePM10/2,5 20 125 320 2x168 1x230/50	Filter class Watts J/m ³ Watts J/m ³ Watts J/m ³ Watts Volt/Hz
Filter: Energy consumption: Output (motor): Power supply: Temperature efficiency:	Min Max Forced	ePM10/2,5 10 45 145 2x82 1x230/50 >80%	ePM10/2,5 12 73 155 2x80 1x230/50 >80%	ePM10/2,5 20 125 320 2x168 1x230/50 >80%	Filter class Watts J/m ³ Watts J/m ³ Watts J/m ³ Vatts Volt/Hz

Air flow indicates the balanced air renewal in relation to the motor voltage and is stated as m3/h. The control unit has 4 levels. Level 4 gives maximum capacity. The standard setting of the unit is the maximum capacity (see the diagram below). Contact the distributor if the unit is to be used with forced operation. The sound level is indicated in decibels (dB) in relation to the air renewal, measured at a distance of 1 meter in front of and 1 meter directly below the air supply grate. By way of comparison it may be mentioned that whispering corresponds to 30 dBA, ordinary spoken conversation corresponds to 60 dB and street traffic to about 90 dBA. The temperature efficiency on the exchanger is indicated as a percentage (%) and is expressed as the ratio between the obtained temperature difference and the maximum achievable temperature difference. This is, specifically, the outdoor temperature minus the air supply temperature divided by the outdoor temperature minus the air supply temperature divided by the outdoor temperature minus the as a percentage (%) as a percentage (%) and is expressed as the ratio between the obtained temperature difference. This is, specifically, the outdoor temperature minus the air supply temperature divided by the outdoor temperature minus the as a percentage (%) as a percentage (%) and is expressed as the ratio between the obtained temperature difference. This is, specifically, the outdoor temperature minus the air supply temperature divided by the outdoor temperature minus the as a percentage (%) and is expressed as a percentage (%) and is expressed as the ratio between the obtained temperature difference. This is, specifically, the outdoor temperature minus the air supply temperature divided by the outdoor temperature minus the as a percentage (%) and is expressed as a percentage (%) and (%) are the outdoor temperature minus the air supply temperature divided by the outdoor temperature minus the as a percentage (%) and (%) are the outdoor temperature divided by the outdoor temp

DIMENSIONAL DRAWING

Dimension [mm]	CA300	CA500	CA800
A	803	930	1060
В	350	410	471
C	657	724	838
D	347	409	470
E	1142	1544	1818
F	1250	1647	1921
G	932	1297	1534
Н	158	174	192
I	158	174	192
J	185	210	249

LOCATION

The unit is generally placed on a wall directly under the ceiling. This location best exploits the coanda effect as it leads the air further into the room along the surface of the ceiling. In this way inflowing air can mix with the room's existing air for a longer period of time and thereby prevent draught. This location, as the point for supply and exhaust airflow, provides optimal circulation

LOCATION IN A FALSE CEILING

The ComfortAir series also has the possibility of locating the unit in false ceilings. In this way, the unit is less visible.

Air measurements

Power consumption

Supply lenght

EXCHANGER

Project:	REK+27 - Top project
Offer Nr.:	1
Customer:	Recutech s.r.o
Address:	Poděbradská 289
Country:	Czech republic
Contact person:	Filip Hazuka
Tel., Email:	+420 606 672 555, info@recutech.com

RECUTECH s.r.o. | Poděbradská 289 | Trnová | 530 09 Pardubice | The Czech Republic Tel.: +420 724 514 685 | Tel.: +420 606 672 555 Email: info@recutech.com | www.recutech.com

RESULT OF EXCHANGE

SELECTED TYPE OF EXCHANGER

Supply

300

285,3

5

72

3.9

1

361,2

14,8

0,4

m3/h

m3/h

°C

%

g/kg m/s

kg/h

kJ/kg

°C

Pa Pa m3/ł °C %

REC+27-470-25

Exhaust 300

306,1

25

28

5,5

1.1

361,2

39,1

5,2

INLET	CONDITIONS	

Standard airflow
Actual airflow
Temperature in front of heat exchanger
Relative humidity in front of heat exchanger
Absolute humidity in front of heat exchanger
Face air velocity
Mass flow
Enthalpy in front of heat exchanger
Condensation temperature

OUTLET CONDITIONS

Standard pressure drop
Pressure drop
Actual airflow
Temperature behind heat exchanger
Relative humidity behind heat exchanger
Absolute humidity behind heat exchanger
Face air velocity
Enthalpy behind heat exchangers
Temperature efficiency
Temperature efficiency dry
Recuperation power
Condensation
NEP

NEP		w
THE BAROMETRIC PRESSURE USED	101325	Ра
ALTITUDE	0	m
WEIGHT	7,5	kg

A2 = 246 mm

DIMENSION

A = 496 mm B = 271 mm C = 470 mm

rSelect 7.2.0.6. 17.02.2021 14:16:05 0

Pa	4	9,74	49,74
Pa	-		-
m3/h	3	02,3	289,2
°C	2	1,5	8,5
%	2	4,5	80
g/kg	3	9,9	5,5
m/s	1	,1	1
kJ/kg	3	31,4	22,3
%	8	2,6	-
%	8	2,6	-
kW	1	,7	1,7
l/h	0)	0
W	1	630	

Air measurements

Power consumption

Supply lenght

EXCHANGER

Project:	REK+27 - Top project
Offer Nr.:	1
Customer:	Recutech s.r.o
Address:	Poděbradská 289
Country:	Czech republic
Contact person:	Filip Hazuka
Tel., Email:	+420 606 672 555, info@recutech.com

RECUTECH s.r.o. | Poděbradská 289 | Trnová | 530 09 Pardubice | The Czech Republic Tel.: +420 724 514 685 | Tel.: +420 606 672 555 Email: info@recutech.com | www.recutech.com

RESULT OF EXCHANGE

SELECTED TYPE OF EXCHANGER

Exhaust

500

510,2 25

28

5,5

0,9

602,1

39,1

5,2

Supply

500

475,5

5 72

3,9

0,9

602,1

14,8

0,4

Ра m kg

REC+31-800-25

INLET CONDITIONS	
Standard airflow	m3/h
Actual airflow	m3/h
Temperature in front of heat exchanger	°C
Relative humidity in front of heat exchanger	%
Absolute humidity in front of heat exchanger	g/kg
Face air velocity	m/s
Mass flow	kg/h
Enthalpy in front of heat exchanger	kJ/kg
Condensation temperature	°C

OUTLET CONDITIONS

Standard pressure drop
Pressure drop
Actual airflow
Temperature behind heat exchanger
Relative humidity behind heat exchanger
Absolute humidity behind heat exchanger
Face air velocity
Enthalpy behind heat exchangers
Temperature efficiency
Temperature efficiency dry
Recuperation power
Condensation
NEP

Pa	45,63	45,63
Pa	-	-
m3/h	504,1	481,6
°C	21,7	8,3
%	24,2	81,1
g/kg	3,9	5,5
m/s	0,9	0,9
kJ/kg	31,7	22,1
%	83,6	-
%	83,6	-
kW	2,8	2,8
l/h	0	0
W	2757	

THE BAROMETRIC PRESSURE	USED 101325
ALTITUDE	0
WEIGHT	14,83
DIMENSION	
A = 537 mm A2 =	246 mm
B = 312 mm	
C = 800 mm	

rSelect 7.2.0.6. 17.02.2021 14:16:29 0

Air measurements

Power consumption

Supply lenght

EXCHANGER

RECUTECH s.r.o. Poděbradská 289 Trnová 530 09 Pardubice The Czech Republic	с
Tel.: +420 724 514 685 Tel.: +420 606 672 555	
Email: info@recutech.com www.recutech.com	

Project:	REK+27 - Top project
Offer Nr.:	1
Customer:	Recutech s.r.o
Address:	Poděbradská 289
Country:	Czech republic
Contact person:	Filip Hazuka
Tel., Email:	+420 606 672 555, info@recutech.com

SELECTED TYPE OF EXCHANGER

Supply

800

760,8

5

72

3,9

0,9

963,3

14.8

0,4

REC+39-950-30

Exhaust

800

816,3

25

28

5,5

1

963,3

39,1

5.2

INLET CONDITIONS

RESULT OF EXCHANGE

Standard airflow	m3/h
Actual airflow	m3/h
Temperature in front of heat exchanger	°C
Relative humidity in front of heat exchanger	%
Absolute humidity in front of heat exchanger	g/kg
Face air velocity	m/s
Mass flow	kg/h
Enthalpy in front of heat exchanger	kJ/kg
Condensation temperature	°C

OUTLET CONDITIONS

Standard pressure drop
Pressure drop
Actual airflow
Temperature behind heat exchanger
Relative humidity behind heat exchanger
Absolute humidity behind heat exchanger
Face air velocity
Enthalpy behind heat exchangers
Temperature efficiency
Temperature efficiency dry
Recuperation power
Condensation
NEP

Pa	46,96	46,96
Pa	-	-
m3/h	805,4	771,8
°C	21,3	8,7
%	24,8	78,7
g/kg	3,9	5,5
m/s	0,9	0,9
kJ/kg	31,2	22,6
%	81,4	-
%	81,4	-
kW	4,4	4,4
l/h	0	0
w	4290	

THE BAROMETRIC PRESSURE USED	101325	Ра
ALTITUDE	0	m
WEIGHT	20,22	kg

DIMENSION

A = 619 mm	A2 = 246 mm
B = 394 mm	
C = 950 mm	

rSelect 7.2.0.6. 17.02.2021 14:17:51 0

CONTROL / OPERATION

TX Electronic Control

•

With TX Electronic Control / display panel, there are many opportunities for individual setup parameters.

- Forced Mode Software stop
- Prolonged Mode
- **Temperature Setpoints**
 - Keypad Lock in 4 levels •
- Night Mode • Calendar

Day Mode

- DST Off/on
- Language Standby
- PIR
- System Info
- others

- Alarm menu
- Clock/day/date
- **Tecnical Menu**

Master / Slave

The master / slave function allows communication between a unit (master) and up to 5 additional units (slaves 1-5). The master controls the slaves so that all 6 units run in exactly the same way.

The slaves send information back to the master. Any error that might arise in a slave unit will be displayed on the master with an error message and specification of the defective unit. Consequently, all units must be numbered.

This particular master / slave function requires an extra small circuit board for each unit. This small circuit board should be mounted on the existing main circuit board of each unit.

LON (Local Operating Network) is a network where the intelligence is distributed to the devices connected to the system, and not concentrated in a control station as in a traditional network. Thousands of TX plants can be set up on the same network and the wiring can be several kilometers long. In order to use the LON network, install an additional small circuit board on the main board of each unit.

• 4 parameters can be written, 14 parameters can be read

/IUDbus

MODbus is an industrial standard of serial communication for use in client/server communication between devices that can be connected through different networks. 247 TX units can be installed in the same MODbus network and cable length can be up to 500 meters, extended up to 1000 meters at low speed data communication. In order to use the MODbus network, install an additional circuit board on the main board of each plant.

• 16 parameters can be written, 17 parameters can be read

MODbus m/converter og pc-software

MODbus is an industrial standard of serial communication for use in client/server communication between devices that can be connected through different networks. 200 TX units can be installed in the same MODbus network and cable length can be up to 500 meters, extended up to 1000 meters at low speed data communication. In order to use the MODbus network, install an additional circuit board on the main board of each plant.

• 38 parameters can be read and written

OPTION FOR ComfortAir

	CA300	CA500	CA800
TX Electronic Controller	0	0	0
CO₂ sensor T8100-E-D with display	0	0	0
CO₂ sensor T8031 built in	0	0	0
Hygrostat	0	0	0
PIR Sensor	0	0	0
Temperature Sensor	•	٠	•
LON Interface	0	0	0
Master/Slave print	0	0	0
MODbus print	0	0	0
MODbus Converter incl. Software	0	0	0
Filter ePM10/2,5	•	٠	•
Fittings for installation in false celling	0	0	0
Angle brackets for install. in false celling	0	0	0
Combi Right/Left	0	0	0
Condensation pump	0	0	0
Condensation tray	•	•	•
Modulating by-pass	•	٠	•
2 x dampers - in & out air	0	0	0
Electric heater	0	0	0
Water heating battery	0	0	0
Counter flow heat exchanger (alu)	•	•	•
Mounting Brackets	•	•	•
Tubes	0	0	0
Gratings	0	0	0
Color RAL 9010	•	•	•
Other RAL color/graphics images	0	0	0
Filter Alarm	●	٠	•

Standard

O Option

SEE MORE DETAILS ON www.turbovex.com

Turbovex A/S Industrivej 45 DK-9600 Aars Tel. +45 96 98 14 62 info@turbovex.dk www.turbovex.com